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Chemical investigations on the organic extract of the Formosan soft coral Nephthea
erecta led to the isolation of two new eudesmanoids, (4R*,5S*,6Z,10R*)-8-oxo-
eudesm-6-en-5a,11-diol (1) and (6E,10R)-4,5-dioxo-11-methoxy-eudesm-6-ene (2),
together with one new tri-nor-eudesmane sesquiterpenoid, (4S*,5E,10R*)-7-oxo-tri-
nor-eudesm-5-en-4b-ol (3). The structures of metabolites 1–3 were elucidated through
extensive spectroscopic analyses and by comparison with those reported in the
literature. The anti-inflammatory activity using RAW 264.7 macrophages and their
cytotoxicity against selected cancer cells of 1–3 were evaluated in vitro.

Keywords: Nephthea erecta; eudesmanoids; tri-nor-eudesmane; anti-inflammatory
activity; RAW 264.7 macrophages; cytotoxicity

1. Introduction

Sesquiterpenoids and their analogs,

especially those of the genus Nephthea,

constitute a large family of secondary

metabolites endowed with a range of

structural diversity [1– 10]. Some of

these secondary metabolites have exhib-

ited an array of biological activities such

as insecticidal [2], cytotoxic [3–8], anti-

inflammatory [8,9], and antibacterial prop-

erties [8]. In the course of our ongoing

endeavor to discover bioactive substances

from marine organisms, chemical investi-

gations of the Formosan soft coral

Nephthea erecta Kükenthal were under-

taken exhaustively. Two new eudesmane-

type sesquiterpenoids, characterized as

(4R*,5S*,6Z,10R*)-8-oxo-eudesm-6-en-

5a,11-diol (1) and (6E,10R)-4,5-dioxo-11-

methoxy-eudesm-6-ene (2), and a new

tri-nor-eudesmane sesquiterpenoid, (4S*,

5E,10R*)-7-oxo-tri-nor-eudesm-5-en-4b-

ol (3) (Figure 1), were isolated from the

organism. The details of isolation and

structural elucidation of these secondary

metabolites are discussed in this paper.

The in vitro anti-inflammatory activity

using RAW 264.7 macrophages of 1

(10mM) exhibited the observed activity

against iNOS protein expression, but no

discernible activity against COX-2 protein

expression. However, metabolites 2 and 3

inconspicuously reduced the levels of the

iNOS and COX-2 proteins.
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2. Results and discussion

(4R*,5S*,6Z,10R*)-8-Oxo-eudesm-6-en-

5a,11-diol (1) was obtained as a colorless,

viscous oil. The HR-ESI-MS of 1 exhibited

a pseudomolecular ion peak at m/z

275.1621 [MþNa]þ, consistent with the

molecular formula of C15H24O3, requiring

four degrees of unsaturation. The UV

spectrum showed the lmax (MeOH) value

at 232 nm, indicating the presence of a

cyclohex-2-enone moiety, as well as from a

strong IR absorption at 1682 cm21 (con-

jugated carbonyl group). The 1H and 13C

NMR spectra (Table 1) of 1 also proved to

contain resonances for the above function-

ality at dH 6.86 (1 H, s, H-6) and dC 141.7

Figure 1. Structures of metabolites 1–3.

Table 1. 1H and 13C NMR spectroscopic data of 1–3.a

1 2 3

C/H 13C 1H 13C 1H 13C 1H

1 32.8 (t)b a: 1.86 dt (13.2, 4.4)c 36.6 (t)b a: 1.56 m 41.2 (t)b a: 1.71 m
b: 1.17 br d (13.2) b: 1.39 m b: 1.34 td

(13.2, 3.2)c

2 20.2 (t) a: 1.56 m 19.3 (t) a: 1.52 m 17.3 (t) a: 1.56 m
b: 1.61 m b: 1.32 m b: 2.10 dt

(14.0, 4.0)
3 29.9 (t) a: 1.61 m

b: 1.53 m
44.6 (t) a: 2.43 m

b: 2.39 m
40.2 (t) a: 1.95 m

b: 1.52 m
4 32.5 (d) 1.94 m 215.5 (s) 71.5 (s)
5 72.6 (s) 207.8 (s) 169.8 (s)
6 141.7 (d) 6.86 s 123.5 (d) 5.92 s 123.2 (d) 6.04 s
7 144.3 (s) 168.7 (s) 201.2 (s)
8 202.6 (s) 25.7 (t) 2.43 m 34.1 (t) a: 2.39 br dt

(17.6, 3.6)
b: 2.61 ddd

(17.6, 14.4, 4.8)
9 49.9 (t) a: 2.93 d (16.8) 34.0 (t) a: 1.78 m 40.1 (t) a: 1.74 m

b: 2.05 d (16.8) b: 1.98 m b: 1.86 dd
(14.4, 4.8)

10 40.6 (s) 43.6 (s) 35.8 (s)
11 71.8 (s) 73.6 (s) 24.5 (q) 1.46 s
12 28.5 (q) 1.42 s 26.0 (q) 1.34 s 29.0 (q) 1.42 s
13 29.2 (q) 1.43 s 25.8 (q) 1.35 s
14 21.7 (q) 1.05 s 22.7 (q) 1.08 s
15 14.9 (q) 1.00 d (6.4) 30.5 (q) 2.13 s
OMe 51.4 (q) 3.10 s

a Spectra were measured in CDCl3 (1H, 400 MHz and 13C, 100 MHz).
b Multiplicities are deduced by HSQC and DEPT experiments.
c J values (in Hz) are in parentheses.
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(CH, C-6), 144.3 (qC, C-7), and 202.6 (qC,

C-8). In addition, its IR spectrum absorp-

tion band at 3439 cm21 indicated the

presence of a hydroxyl moiety. This

assumption was further supported by the
13C NMR signals resonating at dC 72.6 (qC,

C-5) and 71.8 (qC, C-11). The above

functionalities accounted for two of the

four degrees of unsaturation, indicating a

bicyclic structure for 1.

From the COSY spectrum (Figure 2) of

1, it was possible to establish the proton

sequence from H2-1 to Me-15 through

H2-2, H2-3, and H-4. The cyclohex-2-

enone fragment was confirmed by the

HMBC correlations from H-6 to C-8 and

C-10, and from H2-9 to C-5, C-8, and C-

10. Additionally, the HMBC spectrum

exhibited correlations from Me-14 to C-1,

C-5, C-9, and C-10, from Me-15 to C-3

and C-4, and from H-6 to C-4 and C-5, as

well as from Me-12 and Me-13 to C-11

and C-7, establishing an eudesmane-type

sesquiterpene skeleton of 1. The above

HMBC correlations also led to the position

of the two tertiary hydroxyl groups at C-5

and C-11, respectively. Thus, the planar

structure of 1 was proposed decidedly.

The relative configuration of 1 was

determined by the combination of the

NOESY spectrum and a computer-gener-

ated lower energy conformation using

MM2 force field calculations (Figure 3).

The NOE correlations between Me-14

with the following protons of H-1b, H-2b,

H-4, and H-9b suggested b-orientation of

the above protons, while the methyl group

at C-4 was oriented on the opposite side.

H-2a was found to show NOE correlations

with H-1a and Me-15, indicating a-orien-

tation of Me-15. Moreover, the D value

(dCDCl3
2dC5 D5 N) of the Me-14 protons

(400 MHz) of 1 in two different solvents

(CDCl3 and C5D5N) is small (20.06 ppm),

where the dihedral angle between 5-OH

and Me-14 is large, indicating a-orien-

tation of 5-OH [11]. On the basis of the

above observations, together with other

detailed NOESY correlations, the structure

of (4R*,5S*,6Z,10R*)-8-oxo-eudesm-6-

en-5a,11-diol could be determined as

shown in Figure 1.

Figure 2. Selected HMBC (! ) and 1H–1H COSY ( ) correlations of 1–3.

Figure 3. Key NOESY correlations of 1 and 3.
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The UV absorption maximum at

233 nm, and a strong IR absorption at

1684 cm21, as well as the observation of

the featuring carbon resonances at dC

207.8 (qC, C-5), 123.5 (CH, C-6), and

168.7 (qC, C-7) in the 13C NMR spectrum,

revealed the presence of an a,b-unsatu-

rated carbonyl functionality in 2. Further-

more, a keto-carbonyl carbon was

recognized as being present in 2 from its
13C NMR signal at dC 215.5 (qC, C-4), as

well as from a strong IR absorption at

1716 cm21. The above functionalities

accounted for three of the four degrees of

unsaturation, suggesting a monocyclic

skeleton for 2. By the assistance of

extensive 2D NMR data, including

COSY and HMBC correlations (Figure 2),

the plane skeleton of 2 was fully proposed.

Metabolite 2 is the methoxyl analog of

chabrolidione B [7] and its HR-ESI-MS

showed a pseudomolecular ion peak at m/z

289.1779 [MþNa]þ, which is compatible

with the molecular composition of

C16H26O3. The 1H NMR spectrum showed

an additional proton singlet at dH 3.10

corresponding to 11-OMe. The 13C NMR

spectrum was comparable to that of

chabrolidione B [7], except for an

additional methoxyl signal at dC 51.4,

which is located at C-11 from the HMBC

correlations from Me-12, Me-13, and 11-

OMe to C-11 (Figure 2). Furthermore,

metabolite 2 has the same sign of optical

rotation ([a ]D 212) as that of chabroli-

dione B ([a ]D 29.3). Thus, the absolute

configuration of 2 was assumed to be 10R.

On the basis of the above findings, the

structure of (6E,10R)-4,5-dioxo-11-meth-

oxy-eudesm-6-ene (2) was established

unambiguously.

Metabolite 3 was isolated as a colorless,

viscous oil. According to HR-ESI-MS atm/z

217.1206 [MþNa]þ and 13C NMR spectral

data, its molecular formula was established

as C12H18O2, implying four degrees of

unsaturation. The UV spectrum showed

lmax (MeOH) value at 235 nm, indi-

cating the presence of a cyclohex-2-enone

fragment, as well as from IR absorption at

1681 cm21. In addition, the 1H and 13C

NMR spectra (Table 1) of 3 further proved

to contain resonances for a cyclohex-2-

enone moiety [dH 6.04 (1 H, s, H-6) and dC

169.8 (qC, C-5), 123.2 (CH, C-6) and

201.2 (qC, C-7)]. Since the above func-

tionality accounted for two of the four

degrees of unsaturation, metabolite 3 was

suggested to be a bicyclic framework.

From the COSY spectrum of 3 (Figure 2),

it was possible to establish the two partial

structures of consecutive proton systems

extending from H2-1 to H2-3 through H2-2,

and from H2-8 to H2-9. The connectivities

between C-1 and C-10, C-9 and C-10, C-5

and C-10 were confirmed by HMBC

correlations of Me-11 with C-1, C-5,

C-9, and C-10 (Figure 2). Furthermore,

the HMBC correlations from Me-12 to

C-3, C-4, and C-5 suggested that C-3/C-4

and C-4/C-5 were connected, and led the

assignment of the tertiary hydroxyl group

at C-4. The relative stereochemistry of 3

assigned by the NOESY spectrum was

compatible with that of 3 obtained by

computer modeling (Figure 3), in which

the close contacts of atoms calculated in

space were consistent with the NOESY

correlations. The cross-peaks between Me-

11 and H-1b, H-2b, and H-8b established

the b-configuration of Me-11. Further-

more, the observed NOE interactions

between H-3a/H-1a and H-3a/Me-12

confirmed the a-orientation of Me-12 and

supported the b-orientation of 4-OH. From

the aforementioned results, metabolite 3

was fully formulated as (4S*,5E,10R*)-7-

oxo-tri-nor-eudesm-5-en-4b-ol.

The determination of absolute stereo-

chemistry of 1 and 3 could not be carried

out due to the absence of the secondary

hydroxyls or the paucity of the material.

It was noteworthy to mention that the

absolute configurations of 1 and 3, as

shown in their formulas, were confirmed

after the determination of the absolute

configuration of 2 on the basis of

biosynthetic reasoning.
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The in vitro anti-inflammatory activi-

ties of metabolites 1–3 were tested using

LPS-stimulated cells. Stimulation of RAW

264.7 macrophage cells with LPS resulted

in the upregulation of the pro-inflammatory

iNOS and COX-2 proteins. At a concen-

tration of 10mM, metabolites 1–3 reduced

the levels of the iNOS protein (79.5 ^ 7.1,

99.1 ^ 5.8, and 106.7 ^ 1.8%, respect-

ively) and COX-2 protein (94.2 ^ 4.3,

101.9 ^ 3.3, and 98.5 ^ 7.1%, respect-

ively), comparing with the control cells

(LPS alone; Figure 4). The primary anti-

inflammatory results of 1 exhibited the

observed activity against iNOS protein

expression, but no discernible activity

against COX-2 protein expression. In

addition, metabolites 2 and 3 showed

insignificant anti-inflammatory activity

against LPS-stimulated RAW 264.7

macrophages. The in vitro anti-inflamma-

tory assays were carried out according to

the procedure described previously [12].

Metabolites 1–3 were tested for

cytotoxicity against P-388 (mouse lym-

phocytic leukemia), HT-29 (human colon

adenocarcinoma), and A549 (human lung

carcinoma) cancer cell lines. The results

showed that metabolites 1–3 were not

cytotoxic to A549 and HT-29 cells.

However, metabolites 1–3 exhibited sig-

nificant cytotoxicity against P-388 cell line

with ED50 values of 2.60, 2.46, and

2.42mg/ml, respectively. The anticancer

agent mithramycin was used as the

positive control and exhibited ED50 values

of 0.06, 0.08, and 0.07mg/ml and against

P-388, HT-29, and A549 cells, respect-

ively. The experimental details of this

assay were carried out according to a

previously described procedure [13].

3. Experimental

3.1 General experimental procedures

Optical rotations were determined using a

JASCO P1020 digital polarimeter. IR

spectra were recorded on a JASCO

FT/IR-4100 infrared spectrophotometer.

UV spectra were obtained on a JASCO V-

650 spectrophotometer. The NMR spectra

were recorded on a Varian MR 400 NMR

spectrometer (400 MHz for 1H and

100 MHz for 13C), using CDCl3 with

TMS as the internal standard. Chemical

shifts are given in d (ppm) and coupling

constants in Hz. ESI-MS were recorded by

ESI FT-MS on a Bruker APEX II mass

spectrometer. Silica gel 60 (230–400

mesh; Merck, Darmstadt, Germany) and

LiChroprep RP-18 (40–63mm; Merck)

were used for column chromatography.

Precoated silica gel plates (Kieselgel 60

F254, 0.25 mm; Merck) and precoated RP-

18 F254s plates (Merck) were used for

analytical TLC analyses. High-perform-

ance liquid chromatography (HPLC) was

carried out using a Hitachi L-7100 pump

equipped with a Hitachi L-7400 UV

Figure 4. Effect of compounds 1–3 at 10mM on the LPS-induced pro-inflammatory iNOS and
COX-2 protein expression of RAW 264.7 macrophages by immunoblot analysis. (A) Immunoblot of
iNOS; (B) immunoblot of COX-2, and (C) immunoblot of b-actin. The values are mean ^ SEM
(n ¼ 5). The relative intensity of the LPS-alone stimulated group was taken as 100%. Significantly
different from LPS-stimulated (control) group (*P , 0.05).
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detector at 220 nm and a semi-preparative

reversed-phase column (Hibar Purospher

RP-18e, 5mm, 250 mm £ 10 mm; Merck).

3.2 Animal material

The Formosan soft coral N. erecta was

collected by hand using scuba at the Green

Island located in the southeast coast of

Taiwan, in July 2005, at a depth of 10 m,

and was stored in a freezer for 5 weeks

until extraction. This soft coral was

identified by one of the authors (C.-F.D.).

A voucher specimen (GN-80) has been

deposited at the Department of Marine

Biotechnology and Resources, National

Sun Yat-sen University.

3.3 Extraction and isolation

A specimen of N. erecta was extracted

repeatedly with fresh MeOH at room

temperature. The combined MeOH

extracts were evaporated under reduced

pressure at 358C to yield a brown viscous

gum. The resulting MeOH extract

(320 mg) was subjected to column chro-

matography on silica gel using CH2Cl2 and

MeOH gradient (100:1–0:1) for elution, to

give 30 fractions. A fraction eluted with

CH2Cl2–MeOH (80:1) was further pur-

ified by RP-HPLC using 65% MeOH in

H2O to afford 1 (2 mg), 2 (1 mg), and 3

(1 mg).

3.3.1 (4R*,5S*,6Z,10R*)-8-Oxo-

eudesm-6-en-5a,11-diol (1)

Colorless, viscous oil; ½a�24
D þ 52

(c ¼ 0.1, CHCl3); UV (MeOH) lmax

(log 1): 232 (3.85); IR (KBr) nmax: 3439,

2932, 1682, 1660, 1461, 1378, 1165, 1126,

979, 747 cm21; 1H and 13C NMR spectro-

scopic data, see Table 1; ESI-MS m/z: 275

[MþNa]þ; HR-ESI-MS m/z: 275.1621

[MþNa]þ (calcd for C15H24O3Na,

275.1623). Selected 1H NMR (C5D5N,

400 MHz) d 6.23 (1H, br s, H-6), 2.63 (1H,

d, J ¼ 16.8 Hz, H-9a), 2.19 (1H, d,

J ¼ 16.8 Hz, H-9b), 2.16 (1H, m, H-4),

1.88 (1H, m, H-1a), 1.72 (3H, s, Me-13),

1.64 (3H, s, Me-12), 1.12 (3H, d, J ¼ 6.4,

Me-15), 1.11 (3H, J ¼ 6.8, Me-14).

3.3.2 (6E,10R)-4,5-Dioxo-11-methoxy-

eudesm-6-ene (2)

Colorless, viscous oil; ½a�24
D 212 (c ¼ 0.1,

CHCl3); UV (MeOH) lmax (log 1): 233

(3.73); IR (KBr) nmax: 2927, 1716, 1684,

1668, 1457, 1377, 1361, 1262, 1170, 1071,

802, 749 cm21; 1H and 13C NMR spectro-

scopic data, see Table 1; ESI-MS m/z: 289

[MþNa]þ; HR-ESI-MS m/z: 289.1779

[MþNa]þ (calcd for C16H26O3Na,

289.1780).

3.3.3 (4S*,5E,10R*)-7-Oxo-tri-nor-

eudesm-5-en-4b-ol (3)

Colorless, viscous oil; ½a�24
D 26 (c ¼ 0.1,

CHCl3); UV (MeOH) lmax (log 1): 235

(3.82); IR (KBr) nmax: 3419, 2926, 1681,

1666, 1458, 1375, 1209, 1124, 876 cm21;
1H and 13C NMR spectroscopic data, see

Table 1; ESI-MS m/z: 217 [MþNa]þ; HR-

ESI-MS m/z: 217.1206 [MþNa]þ (calcd

for C12H18O2Na, 217.1204).
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